
What is a file? 

File is a named location on disk to store related information. It is used to 
permanently store data in a non-volatile memory (e.g. hard disk). 

Since, random access memory (RAM) is volatile which loses its data when 

computer is turned off, we use files for future use of the data. 

When we want to read from or write to a file we need to open it first. 
When we are done, it needs to be closed, so that resources that are tied 

with the file are freed. 

Hence, in Python, a file operation takes place in the following order. 

1. Open a file 
2. Read or write (perform operation) 

3. Close the file 

 

How to open a file? 

Python has a built-in function open() to open a file. This function returns a 

file object, also called a handle, as it is used to read or modify the file 

accordingly. 

 

File handling is an important part of any web application. 

Python has several functions for creating, reading, updating, and deleting 

files. 

File Handling 

The key function for working with files in Python is the open() function. 

The open() function takes two parameters; filename, and mode. 

There are four different methods (modes) for opening a file: 

"r" - Read - Default value. Opens a file for reading, error if the file does not 

exist 



"a" - Append - Opens a file for appending, creates the file if it does not exist 

"w" - Write - Opens a file for writing, creates the file if it does not exist 

"x" - Create - Creates the specified file, returns an error if the file exists 

In addition you can specify if the file should be handled as binary or text 
mode 

"t" - Text - Default value. Text mode 

"b" - Binary - Binary mode (e.g. images) 

'+' Open a file for updating (reading and writing) 

Syntax 

To open a file for reading it is enough to specify the name of the file: 

f = open("demofile.txt") 

The code above is the same as: 

f = open("demofile.txt", "rt") 

Because "r" for read, and "t" for text are the default values, you do not 

need to specify them. 

Note: Make sure the file exists, or else you will get an error. 

Open a File on the Server 

Assume we have the following file, located in the same folder as Python: 

demofile.txt 

Hello! Welcome to demofile.txt 

This file is for testing purposes. 

Good Luck! 

To open the file, use the built-in open() function. 

The open() function returns a file object, which has a read() method for 

reading the content of the file: 



Example 

f = open("demofile.txt", "r") 

print(f.read()) 

Read Only Parts of the File 

By default the read() method returns the whole text, but you can also 

specify how many characters you want to return: 

Example 

Return the 5 first characters of the file: 

f = open("demofile.txt", "r") 

print(f.read(5)) 

Read Lines 

You can return one line by using the readline() method: 

Example 

Read one line of the file: 

f = open("demofile.txt", "r") 

print(f.readline()) 

By calling readline() two times, you can read the two first lines: 

Example 

Read two lines of the file: 

f = open("demofile.txt", "r") 

print(f.readline()) 

print(f.readline()) 

Run example » 

By looping through the lines of the file, you can read the whole file, line by 

line: 

https://www.w3schools.com/python/showpython.asp?filename=demo_file_readline2


Example 

Loop through the file line by line: 

f = open("demofile.txt", "r") 
for x in f: 

  print(x) 

Close Files 

It is a good practice to always close the file when you are done with it. 

Example 

Close the file when you are finish with it: 

f = open("demofile.txt", "r") 

print(f.readline()) 

f.close() 

Run example » 

Note: You should always close your files, in some cases, due to buffering, 

changes made to a file may not show until you close the file. 

Write to an Existing File 

To write to an existing file, you must add a parameter to 

the open() function: 

"a" - Append - will append to the end of the file 

"w" - Write - will overwrite any existing content 

Example 

Open the file "demofile2.txt" and append content to the file: 

f = open("demofile2.txt", "a") 

f.write("Now the file has more content!") 

f.close() 

 

#open and read the file after the appending: 
f = open("demofile2.txt", "r") 

print(f.read()) 

https://www.w3schools.com/python/showpython.asp?filename=demo_file_close


Open the file "demofile3.txt" and overwrite the content: 

f = open("demofile3.txt", "w") 
f.write("Woops! I have deleted the content!") 
f.close() 
 
#open and read the file after the appending: 
f = open("demofile3.txt", "r") 
print(f.read()) 
Note: the "w" method will overwrite the entire file. 

Create a New File 

To create a new file in Python, use the open() method, with one of the 

following parameters: 

"x" - Create - will create a file, returns an error if the file exist 

"a" - Append - will create a file if the specified file does not exist 

"w" - Write - will create a file if the specified file does not exist 

Example 

Create a file called "myfile.txt": 

f = open("myfile.txt", "x") 

Result: a new empty file is created! 

Example 

Create a new file if it does not exist: 

f = open("myfile.txt", "w") 

Delete a File 

To delete a file, you must import the OS module, and run 
its os.remove() function: 

Example 

Remove the file "demofile.txt": 



import os 

os.remove("demofile.txt") 

 

Check if File exist: 

To avoid getting an error, you might want to check if the file exists before 
you try to delete it: 

Example 

Check if file exists, then delete it: 

import os 

if os.path.exists("demofile.txt"): 
  os.remove("demofile.txt") 

else: 

  print("The file does not exist") 

Delete Folder 

To delete an entire folder, use the os.rmdir() method: 

Example 

Remove the folder "myfolder": 

import os 

os.rmdir("myfolder") 

Note: You can only remove empty folders. 

 

How to read files in Python? 

To read a file in Python, we must open the file in reading mode. 

There are various methods available for this purpose. We can use 

the read(size) method to read in size number of data. If size parameter is 

not specified, it reads and returns up to the end of the file. 

>>> f = open("test.txt",'r',encoding = 'utf-8') 



>>> f.read(4)    # read the first 4 data 

'This' 

 

>>> f.read(4)    # read the next 4 data 

' is ' 

 

>>> f.read()     # read in the rest till end of file 

'my first file\nThis file\ncontains three lines\n' 

 

>>> f.read()  # further reading returns empty sting 

'' 

We can see that, the read() method returns newline as '\n'. Once the end 

of file is reached, we get empty string on further reading. 

We can change our current file cursor (position) using the seek() method. 

Similarly, the tell() method returns our current position (in number of 

bytes). 

>>> f.tell()    # get the current file position 

56 

 

>>> f.seek(0)   # bring file cursor to initial position 

0 

 

>>> print(f.read())  # read the entire file 

This is my first file 

This file 

contains three lines 

We can read a file line-by-line using a for loop. This is both efficient and 

fast. 

>>> for line in f: 

...     print(line, end = '') 

... 

https://www.programiz.com/python-programming/for-loop


This is my first file 

This file 

contains three lines 

The lines in file itself has a newline character '\n'. 

Moreover, the print() end parameter to avoid two newlines when printing. 

Alternately, we can use readline() method to read individual lines of a file. 

This method reads a file till the newline, including the newline character. 

>>> f.readline() 

'This is my first file\n' 

 

>>> f.readline() 

'This file\n' 

 

>>> f.readline() 

'contains three lines\n' 

 

>>> f.readline() 

'' 

Lastly, the readlines() method returns a list of remaining lines of the 

entire file. All these reading method return empty values when end of file 

(EOF) is reached. 

>>> f.readlines() 

['This is my first file\n', 'This file\n', 'contains three lines\n'] 

 


